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Wisconsin Landowner Perspectives on Woodland Burning

Why did you burn your woodland? What was your intent?

“Our goals are to clear brush and improve conditions for native plants. On some sites we want to
create savanna.”

- Grant County Landowner

“Reduce invasive, encourage growth of young oaks”
- Iowa County Landowner

“To improve forest floor health and plant diversity and to encourage savanna transitions near open
prairie”
- Iowa County Landowner

“We are trying to restore our woodland to what it was many years ago prior to in be invaded by
plants, shrubs and trees not native to our area. I believe burning helps accomplish that goal by
promoting native plant growth.”

- Dane County Landowner

“Our woods were a tangle of understory invasives, including buckthorn, prickly ash, raspberry,
cherry trees, and garlic mustard. It was nearly impossible, in some areas, to walk through them.”
- Iowa County Landowner

What were your expectations, and how did they compare to the results of the burn?

“We expected to clear brush and in some cases kill weeds such as garlic mustard. Effects varied
among sites and time of year. In some places the fire was limited by lack of fuel. In these places we
need to do more hand-removal of invasive shrubs to improve fuel on the ground. In other places
the fuel was adequate and the fire was effective.”

- Grant County Landowner

“Expectation was to see fewer invasives year one, but return of brambles and garlic mustard year
two. That’s pretty much what I saw. Controlled larger woody stuff better than smaller stuft.”
- Iowa County Landowner

“This was a first attempt/experiment, so we had low expectations. We did not have enough oak leaf
litter to really carry the burn.”
- Iowa County Landowner

“So far, so good. Restoration is a continuous process that evolves. I am happy with the progress so
far. It is difficult to compare results with expectations because we do not know exactly what our
woodland looked like before it was invaded.”

- Dane County Landowner

“We hoped that controlled burning would help knock back the undesirable species. Prickly ash was
most affected, blackened and dead. Buckthorn was top-killed, but sent up shoots. Still, it’s much
easier to see, cut and treat the growth with a 3% solution of glycosate. This usually kills them. And
after burning, we can get into the woods to girdle less desirable trees. They die but still provide
nesting areas for all the woodpecker species we have, as well as other cavity-nesters. In areas that
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were burned several years in a row, now oak seedlings are coming back, apparently outcompeting
other seedlings. Cherry and walnut seedlings are sprouting also. The woods are much more open. We
hope garlic mustard and new invasives can be kept in check since it’s easier to find them now.”

- Iowa County Landowner

Anything else you’d like to share about woodland burning in Wisconsin?
“We have noticed benefits for native plants, especially in more open woodland sites with few shrubs.
Once the woodland is open enough to burn, it seems a good idea to burn it often to maintain a

healthy fuel load.”
- Grant County Landowner

“The burning I had was woodland adjacent to prairie being burned. I am interested in burning a 20
acre section that is all wooded but understand that the DNR discourages that.”
-Iowa County Landowner

“We encourage WI DNR and any other state stakeholders to increase communications and
education about the benefits of burns”
- Iowa County Landowner

“We’re finding long-suppressed native species, like lead plant and poke milkweed, appearing again. A
few small stands of poplars can be valuable for roughed grouse, which we used to see and hear.
Woodcock called in our woods this spring, and several pairs of redheaded woodpeckers are raising
young. A valuable effect of fire management is to open up the understory, so that seedlings like
white, red, black, and even some bur oaks stand a chance of coming back. Native species of trees
are what native species of plants and animals need to survive. We‘ll continue to use controlled
burning to keep the duff from building up excessively, which enables native flora to return. Finally,
in these years of out-of-control fires, it’s important to keep fuel from building up.”

-Iowa County Landowner

“I would like to see more of it done.”
- Dane County Landowner
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SCIENTIFIC REPLIRTS

Frequent Prescribed Fires Can
Reduce Risk of Tick-borne Diseases

Elizabeth R. Gleim!2*, Galina E. Zemtsova?, Roy D. Berghaus*, Michael L. Levin?,

Mike Conner? & Michael J. Yabsley®?
Received: 4 February 2019 . Recently, a two-year study found that long-term prescribed fire significantly reduced tick abundance
Accepted: 27 June 2019 . atsites with varying burn regimes (burned surrounded by burned areas [BB], burned surrounded by
Published online: 10 July 2019 unburned areas [BUB], and unburned surrounded by burned areas [UBB]). In the current study, these
. ticks were tested for pathogens to more directly investigate the impacts of long-term prescribed
: burning on human disease risk. A total of 5,103 ticks (4,607 Amblyomma americanum, 76 Amblyomma
: maculatum, 383 Ixodes scapularis, two Ixodes brunneus, and 35 Dermacentor variabilis) were tested for
. Borrelia spp., Rickettsia spp., Ehrlichia spp., and Anaplasma phagocytophilum. Long-term prescribed
- fire did not significantly impact pathogen prevalence except that A. americanum from burned habitats
© had significantly lower prevalence of Rickettsia (8.7% and 4.6% for BUB and UBB sites, respectively)
compared to ticks from control sites (unburned, surrounded by unburned [UBUB])(14.6%). However,
during the warm season (spring/summer), encounter rates with ticks infected with pathogenic
bacteria was significantly lower (98%) at burned sites than at UBUB sites. Thus, despite there being no
differences in pathogen prevalence between burned and UBUB sites, risk of pathogen transmission is
lower at sites subjected to long-term burning due to lower encounter rates with infected ticks.

. There are a number of tick species of public health significance in the southeastern United States such as

Amblyomma americanum, Dermacentor variabilis, Ixodes scapularis, and Amblyomma maculatum. All of these

© ticks are capable of transmitting one or more tick-borne pathogens. For example, A. americanum is the main

: vector of Ehrlichia chaffeensis (human monocytic ehrlichiosis [HME]), Ehrlichia ewingii (Ehrlichia ewingii ehrli-

. chiosis), and Panola Mountain Ehrlichia (Panola Mountain ehrlichiosis). A. americanum is also associated with

. the causative agent of Southern tick-associated rash illness (STARI). Although the etiologic agent of STARI has

. not yet been confirmed, Borrelia lonestari and Rickettsia amblyommatis have been suggested as potential causa-

© tive agents2 Other tick-borne pathogens include Rickettsia rickettsii (Rocky Mountain spotted fever [RMSF])

: transmitted by D. variabilis, Rickettsia parkeri (Rickettsia parkeri rickettsiosis) transmitted by A. maculatum, and

. Borrelia burgdorferi (Lyme disease) and Anaplasma phagocytophilum (human granulocytic anaplasmosis [HGA])

: both transmitted by I scapularis.

: The incidence of these tick-borne diseases has increased in the past several decades and several new patho-
gens have emerged including heartland virus, Bourbon virus, Borrelia miyamotoi, Borrelia mayonii, and Ehrlichia
muris eauclairensis®=>. Thus, the need to find cost-effective, practical approaches to reducing tick-borne disease
risk is more important than ever. Interestingly, Gleim et al.° found that long-term prescribed fire significantly
reduced tick abundance and altered tick species composition. However, very few studies have examined whether

. fire could directly impact pathogen prevalence’ despite some studies having indicated that habitat and ecological

© variables can affect pathogen dynamics®”.

: Importantly, prescribed fire is an especially common and necessary land management practice in
fire-dependent ecosystems such as open pine forests, grasslands, and fire-maintained wetlands. Burning at differ-
ent frequencies and intensities can also be an appropriate management tool in fire tolerant hardwood forests!®!!.

. In all of these ecosystems, prescribed fire is typically used to suppress undesirable woody vegetation, stimulate

. herbaceous growth of the understory, and facilitate seed germination. This reduces fuel loads and wildfire risk,

. provides enhanced habitat for wildlife, and increases overall ecosystem health'>"3,

. Warnell School of Forestry and Natural Resources & Southeastern Cooperative Wildlife Disease Study, College of

Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA. 2Jones Center at Ichauway, Newton, GA, 39870,
USA. 3Centers for Disease Control and Prevention, Rickettsial Zoonoses Branch, Atlanta, GA, 30029, USA. “College
of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA. *Present address: 8003 Fishburn Dr., Hollins
University, Roanoke, VA, 24020, USA. Correspondence and requests for materials should be addressed to E.R.G.
(email: egleim@hollins.edu)
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BB 1/1 (100) 1/1 (100) — — 1R. amblyommatis
BUB 19/219 (8.7) 9/15 (60.0) 4/21 (19.0) 6/183 (3.3) 16 R. amblyommatis
A. americanum | UBB 16/350 (4.6) 8/13 (61.5) 2/16 (12.5) 6/321(1.9) 13 R. amblyommatis

412 R. amblyommatis
1 Rickettsia sp. (95%, 98%, DQ092218)

UBUB 589/4037 (14.6) | 280/441 (63.5) | 212/1152 (18.4) | 97/2444 (4.0)

1R. amblyommatis

BB 7/37 (18.9) 7/36 (19.4) 0/1 (0) —
1R. parkeri
A. maculatum | BUB 4/30 (13.3) 4/29 (13.8) 0/1(0) —
UBB 2/6(33.3) 2/5 (40.0) 0/1 (0) —
UBUB 1/3 (33.3) 1/3(33.3) — — 1 R. amblyommatis
BB 0/2 (0) 02 (2) — _
1R. cooleyi
BUB 9/37 (24.3) 9/17 (52.9) — 0/20 (0)

6 Rickettsia sp. TR-39

1 R. amblyommatis

3 R. monacensis

UBB 42/100 (42.0) 42/99 (42.4) 0/1(0) — 17 Rickettsia sp. TR-39

2 Rickettsia sp. (96-98%, KC003474)
1 Rickettsia sp. (99%, JIN190456)

I scapularis

2 R. cooleyi

1R. monacensis

24 Rickettsia sp. TR-39

4 Rickettsia sp. TX140 (99-100%, EF689739)
1 Rickettsia sp. (84%, KC003474)

1 Rickettsia sp. (97%, EU283838)

UBUB 68/132 (51.5) 67/128 (52.3) | 1/4(25.0) —

BB — — — —
1 Rickettsia sp. TR-39
BUB 2/8 (25.0) 2/8 (25.0) — —
1 R. amblyommatis (79%, GQ302891)
D. variabilis
1 R. rhipicephali
UBB 1/9 (11.1) 1/9 (11.1) — —
1 R. amblyommatis
UBUB 7/18 (38.9) 7/18 (38.9)

Table 1. Results of Rickettsia spp. testing by burn treatment (burned surrounded by burned [BB], burned
surrounded by unburned [BUB], unburned surrounded by burned [UBB], and unburned surrounded by
unburned [UBUB]). *Number of infected ticks (or pools when applicable) over total ticks tested (percent
positive). **For nymphs and larvae, indicates minimum infection prevalence. 'For 2010 & 2011, some positive
samples were unsequenceable or were not sent for sequencing. For 2011 only, all samples that were sequenced
had a minimum of 95% identity unless otherwise noted.

To follow-up on our finding that long-term prescribed fire significantly reduced tick abundance®, the current
study tested the ticks collected in that previous study for common tick-borne pathogens to investigate how pre-
scribed fire may affect pathogen dynamics. This would allow us to more definitively determine the impacts of
long-term prescribed fire on human disease risk. This study also provided a basic understanding of tick-borne
pathogen dynamics in geographically and ecologically unique regions of the southeastern United States in which
little was known.

Results

In total 5,103 ticks were tested for one or more pathogens (4,607 A. americanum, 76 A. maculatum, 383 L. scap-
ularis, two I. brunneus, and 35 D. variabilis). Burn treatments were found to have a significant effect on the min-
imum infection prevalence of Rickettsia spp. in A. americanum (p=0.026) with BUB, UBB, and UBUB having
8.7% (19/219), 4.4% (16/361), and 16.7% (584/3490) prevalence, respectively (Table 1). Importantly, minimum
infection prevalence is the most conservative estimate of pathogen prevalence and it is possible that the preva-
lence is higher, particularly for pathogens that occur at a higher prevalence. The BB study site only had a single
A. americanum, which was positive. Burn treatment was not found to have a significant effect on the prevalence
of any other pathogens.

In A. maculatum adults, 19.2% (n=73) were positive for Rickettsia spp. Three of the 14 positives could
be identified to species, of which one was positive for R. parkeri (1.4%) (Table 1). In A. americanum, overall
Rickettsia spp. prevalence ranged between 3.7% and 63.4% based on the life stage. Among the Rickettsia identi-
fied from A. americanum (n =444) (Table 1), 95% were identified as R. amblyommatis (previously Candidatus
R. amblyommii). In L. scapularis adults, 48% were positive for Rickettsia spp. with Rickettsia sp. TR-39 being the
most commonly identified. Other endosymbionts identified in I. scapularis included Rickettsia cooleyi, Rickettsia
monacensis, R. amblyommatis, and Rickettsia sp. TX140 (Table 1). In D. variabilis adults, 28.6% were positive for
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BB 0/30 (0)* | 0/1(0) 0/1(0) — — — 0/32(0)
BUB | 0/24(0) — 0/15(0) 0/21(0) 0/83(0) 0/6 (0) 0/150 (0)
E.chaffeensis | UBB | 0/3(0) — 0/13 (0) 0/16 (0) 0/201 (0) 0/7 (0) 0/240 (0)
UBUB | — — 3/441(0.7) 2/1152(02) | 0/1116(0) 0/13 (0) 5/2724(0.2)
Total | 0/57(0) | 0/1(0) 3/470 (0.6) 2/1189(0.2) | 0/1400(0) | 0/26 (0) 5/3146 (0.2)
BB 0/30(0) | 0/1(0) 0/1(0) — — — 0/32 (0)
BUB | 0/24(0) — 0/15(0) 0/21(0) 0/83(0) 1/6(16.7) | 1/150 (0.7)
E. ewingii UBB | 0/3(0) — 0/13 (0) 0/16 (0) 0/201 (0) 0/7 (0) 0/240 (0)
UBUB | — — 21/441 (4.8) 0/1152 (0) 0/1116 (0) 0/13(0) 21/2724 (0.8)
Total | 0/57(0) | 0/1(0) 21/470 (4.5) | 0/1189 (0) 0/1400 (0) 1/26 (3.8) | 22/3146 (0.7)
BB 0/30(0) | 0/1(0) — — — 0 0/32(0)
Panola BUB | 0/24(0) — 0/10 (0) 0/4 (0) 0/83(0) 0/6 (0) 0/150 (0)
Mountain UBB | 0/3(0) — 0/9 (0) 0/12 (0) 0/201 (0) 0/7 (0) 0/240 (0)
Ehrlichia UBUB | — — 3/274 (1.1) 3/1070 (0.3) 0/1116 (0) 113(77) | 7/2724(0.2)
Total | 0/57(0) | 0/1(0) 3/293 (1.0) 3/1086 (0.3) | 0/1400 (0) 1/26 (3.8) | 7/3146(0.2)

Table 2. Results of Ehrlichia spp. testing by burn treatment (burned surrounded by burned [BB], burned
surrounded by unburned [BUB], unburned surrounded by burned [UBB], and unburned surrounded by
unburned [UBUB]). *Number of infected ticks (or pools when applicable) over total ticks tested (percent

positive). **Minimum infection prevalence.

BB 0/1 (0)* — — 0/1(0)

BUB |1/15(6.7) |0/21(0) 1/83(0.1) 2/120 (1.7)
UBB | 0/13(0) 0/16 (0) 0/201 (0) 0/233 (0)
UBUB | 2/441 (0.4) | 9/1152(1.0) | 14/1116(1.2) | 25/2710 (0.9)
Total | 3/470 (0.6) | 9/1189 (0.7) | 15/1400 (1.1) | 27/3064 (0.9)

Table 3. Results of Borrelia lonestari testing by burn treatment (burned surrounded by burned [BB], burned
surrounded by unburned [BUB], unburned surrounded by burned [UBB], and unburned surrounded by
unburned [UBUB]). *Number of infected ticks (or pools when applicable) over total ticks tested (percent
positive). **Minimum infection prevalence.

Rickettsia spp. and although a number of endosymbionts were detected (Rickettsia rhipicephali, R. amblyommatis,
and Rickettsia sp. TR-39), importantly, no R. rickettsii was detected.

Regarding Ehrlichia spp. (Table 2), in 2011, only A. americanum were tested for Ehrlichia spp., whereas in
2010, A. americanum, A. maculatum, and D. variabilis were tested. In A. americanum adults, prevalence of 0.6%,
4.5%, and 1.0% were detected for E. chaffeensis, E. ewingii (n =470 for both), and Panola Mountain Ehrlichia
sp. (n=293), respectively. Among A. americanum nymphs, minimum infection prevalences of 0.2% and 0.3%
(n=1189 & 1086, respectively) were detected for E. chaffeensis and Panola Mountain Ehrlichia sp. in both years.
In 2010, two D. variabilis (3.8%, n = 26) were positive for E. ewingii or the Panola Mountain Ehrlichia sp. respec-
tively. With the exception of a single E. ewingii positive tick from a BUB site, all other Ehrlichia spp. positive ticks
originated from UBUB sites. All A. maculatum (n=57) and A. americanum larvae (n = 1400) were negative for
all three Ehrlichia spp.

Borrelia infections were rare and none were detected in A. maculatum (n=57), L. scapularis (n=1383), or I.
brunneus (n=2). B. lonestari was detected in A. americanum adults (n =470), nymphs (n=1189), and larvae
(n=1400) at 0.6%, 0.7%, and 1.1% prevalences, respectively (Table 3). Similarly, A. phagocytophilum was rare
with only 1.1% of adult I. scapularis being positive (Table 4). None of the I. scapularis nymphs or I. brunneus were
positive.

Based on the negative binomial regression models, the likelihood of encountering a tick infected with path-
ogenic bacteria or any bacteria was significantly higher at UBUB sites than at burned sites (Tables 5 and 6).
Interestingly, no wildlife species were found to impact encounter rates with ticks with pathogenic or any bacte-
ria (Tables 5 and 6, Fig. 1). Over the two-year sampling period, the peak average (4/—SE) encounter rate with
ticks infected with pathogenic bacteria at burned sites was 0.11 +/— 0.08 infected ticks per hour with an overall
average of only 0.007 +/— 0.005 infected ticks per hour (Fig. 2). In contrast, at UBUB sites, the peak average
encounter rate with ticks infected with pathogenic bacteria was 1.0 4+/— 1.0 infected ticks per hour with an overall
average of 0.20 +/— 0.06 infected ticks per hour.

SCIENTIFICREPORTS| (2019) 9:9974 | https://doi.org/10.1038/s41598-019-46377-4 3



https://doi.org/10.1038/s41598-019-46377-4



www.nature.com/scientificreports/

BB 0/5 (0)* — — 0/5 (0)
BUB 1/30 (3.3) — — 1/30 (3.3)
UBB 2/141 (1.4) 0/1(0) 0/2 (0) 2/144 (1.4)
UBUB | 1/192(0.5) 0/12(0) | — 1/204 (0.5)
Total | 4/368 (1.1) 0/13(0) | 0/2(0) 4/383 (1.0)

Table 4. Results of Anaplasma phagocytophilum testing by burn treatment (burned surrounded by burned
[BB], burned surrounded by unburned [BUB], unburned surrounded by burned [UBB], and unburned
surrounded by unburned [UBUB]). Note that two of our A. phagocytophilum positive sequences were evaluated
and determined to be 99.7% identical to variants detected in cervids. *Number of infected ticks over total ticks
tested (percent positive).

Any Burning (vs. No Burning*) —0.65(1.17) ND 0.579
Season (Warm [Spring/Summer] vs Cool* [Fall/Winter]) 2.51(1.26) ND 0.047
Any Burn X Season —3.43(1.65) ND 0.037
Constant —3.50 (0.92) NA <0.001
In(effort) 1 (exposure)

Table 5. Results of the negative binomial regression which examined the impacts of long-term prescribed
burning, year, quarter, and wildlife occurrence on the number of ticks encountered per hour that were infected
with pathogenic bacteria. SE = Standard error. RR = Relative rate. ND = Not determined; RR is not given
because it depends on the interacting variable. NA = Not applicable. *Indicates the reference category.

Any Burning (vs. No Burning*) —2.09 (0.50) ND <0.001
Season (Warm [Spring/Summer] vs Cool* [Fall/Winter]) 1.54 (0.52) ND 0.003
Any Burn X Season —1.58 (0.62) ND 0.011
Year (2011 vs. 2010%) 0.44 (0.19) 1.55(1.06,2.27) | 0.024
Constant —882(390) NA 0.024
In(effort) 1 (exposure)

Table 6. Results of the negative binomial regression which examined the impacts of long-term prescribed
burning, year, quarter, and wildlife occurrence on the number of ticks encountered per hour that were infected
with any bacteria. SE = Standard error. RR = Relative rate. ND = Not determined; RR is not given because it
depends on the interacting variable. NA = Not applicable. *Indicates the reference category.

In both negative binomial models there was a significant interaction between the effects of burning and sea-
son (p=0.037 for the “pathogenic” model; p=10.011 for the “any bacteria” model). In the case of the pathogenic
model, it was found that encounter rates with pathogenic ticks were 98% lower in the burned sites as compared to
UBUB sites during the warm season (spring/summer) (RR [95% CI] =0.017 [0.003, 0.087]; p < 0.001), but were
not significantly lower during the cool season (fall/winter) (RR [95% CI] =0.52 [0.05, 5.17]; p=10.579), reflecting
the general decrease in pathogenic tick activity at all sites during that season (Fig. 2). When examining the “any
bacteria” model, encounter rates with ticks infected with any bacteria were 88% lower in the burned sites versus
UBUB sites in the cool season (RR [95% CI] =0.12 [0.05, 0.33]; p < 0.001) and 97.5% lower in the warm season
(RR [95% CI] =0.025 [0.011, 0.061]; p < 0.001).

Discussion
This study was the first large scale tick-borne pathogen survey performed in southwestern Georgia and north-
western Florida, thus providing valuable insight into the tick-borne pathogen dynamics in that region. Pathogen
prevalences were similar to what has been reported in other parts of Georgia and neighboring states'*~1.
Although different types of assays (traditional, nested, and real-time PCR) were used to test for pathogens and
some assays changed from the first to second year of testing, this still provided valuable insight into tick-borne
pathogen dynamics in an under-studied region and in under-studied ecosystem types (pine and mixed pine for-
ests). Furthermore, because any differences in assay types would have been distributed across ticks from all sites,
we do not feel that this impacted the statistical comparisons between burn treatments.

Of note were the relatively high prevalences and high diversity of Rickettsia spp. endosymbionts in D. vari-
abilis (28.6%) and I. scapularis (44%) and the failure to detect the known pathogenic bacteria, R. rickettsii in D.
variabilis. In the case of D. variabilis, the low number of ticks tested may have resulted in an inaccurate portrayal
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Figure 1. Average total number of individuals and average number of each individual wildlife species (+/—
standard error) considered in the negative binomial models per site per quarter at unburned, unburned sites
(UBUB) and burned sites. Importantly, none of the host variables were found to significantly impact the
number of ticks encountered per hour that were infected with any bacteria or pathogenic bacteria. Therefore, no
host variables were included in the final negative binomial models.
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UBUB sites (d).

of Rickettsia spp. diversity and prevalence, particularly as it related to R. rickettsii. However, previous studies
have typically found much lower Spotted Fever Group (SFG) Rickettsia prevalence in D. variabilis than what
was detected in this study'”'®. For example, in Maryland prevalences of 3.8%'° for SFG Rickettsia were docu-
mented while a study in Ohio documented a 0.2% prevalence®. In a neighboring state to Georgia, Loving et al.?!
reported a 2.4-3.9% prevalence of SFG Rickettsia over a three year period in South Carolina. Interestingly, it has
been hypothesized that a non-pathogenic SFG Rickettsia, R. peacockii, can inhibit transovarial transmission of R.
rickettsii, thus limiting its distribution in some areas?»**. Indeed, Dergousoff et al.?* found a 76% prevalence of R.
peacockii in D. variabilis and D. andersoni in Canada, while finding no R. rickettsii. It is difficult to draw a conclu-
sion in the current study due to the low sample size of D. variabilis. However, the high prevalence and diversity of
non-pathogenic Rickettsia spp. observed in D. variabilis in this study may be playing a role in driving R. rickettsii
dynamics within the region.

The absence of B. burgdorferi agrees with other studies of this pathogen in the southeastern United States
which note that prevalences are significantly lower compared to prevalences in the northeastern and Midwestern
US?>%, The cause of this disparity is not entirely understood; however, it is suspected that differences in host ecol-
ogy and/or tick questing or feeding behavior may play a role?’. Recently, however, there have been increased/
first detections of B. burgdorferi-infected I. scapularis in some southeastern states (i.e., Kentucky and Tennessee)

so continued surveillance is warranted?*3°,
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We also found a low prevalence of A. phagocytophilum which is similar to what past studies performed in the
southeastern United States have found. For example, Fang et al.*! tested I. scapularis from 15 sites throughout
the Lower Coastal Plain region in South Carolina, Georgia, and Florida and found prevalences ranging between
0-4.1% with the exception of Jekyll Island, Georgia which had a prevalence of 20%. Other studies in Georgia have
found low prevalences and in many cases A. phagocytophilum was not detected®. We evaluated two of our A.
phagocytophilum positive sequences and determined that they were 99.7% identical to variants detected in cervids
(data not shown). Thus, these A. phagocytophilum do not appear to be the AP-ha variant, associated with human
disease® but rather are likely a white-tailed deer variant. Based on limited surveillance, white-tailed deer variants
are commonly detected in Georgia* but to date have not been found to cause disease in humans®.

While a number of studies have looked at the impacts of prescribed fire on tick abundance®*>-*, only a single
study recently conducted after a wildfire in California has examined the impacts of fire on tick-borne pathogen
prevalence’. Unfortunately, due to low prevalence of non-pathogenic Borrelia spp. (the only pathogens detected)
in the California study, the impacts of the wildfire on pathogen prevalence was unclear. Meanwhile, no study has
evaluated the impacts of long-term prescribed fire on tick-borne pathogen prevalence. Importantly, if we are to
better understand the impact of prescribed fire on disease risk, we must understand fire impacts on both tick
abundance and pathogen prevalence (and therefore the encounter rates with infected ticks in an area).

Long-term prescribed fire significantly reduced the chance of encountering a tick infected with pathogenic
bacteria but did not affect the prevalence of pathogenic bacteria. Thus, in this particular system, the reduction in
disease risk can be attributed to the overall reduction in ticks and not a reduction in pathogenic bacteria prev-
alence itself. Interestingly, it did not appear that wildlife host occurrence played a role in the encounter rates of
ticks infected with pathogenic bacteria or any bacteria. However, considering the relatively low number of ticks
with pathogenic bacteria in conjunction with the relatively few sightings of any given wildlife species during each
trail camera survey, this study was limited in its ability to evaluate how wildlife impacted the density of ticks with
pathogenic bacteria.

While burning was not found to affect prevalence of pathogenic bacteria, we did find that UBUB sites had
higher prevalences of Rickettsia spp. in A. americanum than in burned sites. This seems to indicate that burning
not only reduces the abundance of A. americanum® but also alters or interrupts transmission and maintenance
of at least some bacteria. While these Rickettsia spp. are generally thought to be non-pathogenic, there have been
a small number of studies and case reports that suggest that these species may occasionally cause disease. For
example, one case report tied R. montanensis to mild illness**, while several studies have speculated that R. ambly-
ommatis may occasionally cause disease*>*.

It could be argued that Rickettsia spp. were the only species affected due to the fact that A. americanum (which
is known for carrying high prevalences of Rickettsia spp.) dominated in UBUB sites, whereas A. americanum
made up a small proportion of the ticks collected at burned sites®. However, A. americanum was still captured in
sufficient numbers at UBB and BUB sites making it unlikely that differences in capture rates would have resulted
in significantly different prevalences. It is possible, however, that only Rickettsia spp. were affected in part due to
its relatively high prevalence compared to other tick-borne bacteria. Thus, the ubiquity of Rickettsia spp. may have
lent itself to reflecting changes in pathogen dynamics more so than other bacteria which occur at much lower
prevalences.

There are several hypotheses regarding why these burned sites had significantly lower Rickettsia spp. prev-
alences than our UBUB sites: (1) the decrease in prevalence at burned sites may be caused by the significant,
long-term reduction of tick populations observed at burned study sites®. Although Rickettsia spp. are primarily
maintained via transovarial transmission, wildlife hosts may play a role in transmission as well. Indeed, the fact
that Rickettsia spp. prevalence increased from one life stage to the next in our data indicates that wildlife hosts do
play a role in Rickettsia spp. transmission. Thus, the long-term reductions in ticks could lead to reduced trans-
mission and overall lower ubiquity of this bacteria in the enzootic cycle, thus lowering overall Rickettsia spp.
prevalence. (2) Long-term prescribed fire also alters habitat which would directly impact the type of hosts present
within these ecosystems. While it is unclear whether this may actually impact pathogen prevalence, it is possible
that changes in host dynamics also contribute towards altered pathogen dynamics in these burned areas. In par-
ticular, white-tailed deer are known to prefer habitat associated with UBUB forests*’. Although no studies have
evaluated the potential for white-tailed deer to become bacteremic with R. amblyommatis, other Rickettsia spp.
have been detected in the blood of cervids**-*1. (3) Because long-term prescribed fire alters habitat, it also affects
the microclimate at these sites. Generally speaking, sites subjected to long-term prescribed fire have a diverse
understory, minimal to no midstory, and a semi-open pine canopy. This forest structure creates a harsh microcli-
mate for some tick species as they would experience higher temperatures, increased wind, and thus lower humid-
ity. While previous studies have found that this habitat is responsible for reduced survival of A. americanum in
burned habitats®, it may also affect the ability of these ticks to maintain Rickettsia spp. infection. Indeed, under
laboratory conditions, Rickettsia spp. responded to changes in temperatures with some species being unable to
grow at extreme temperatures that could be feasibly reached in direct sunlight in hot climates such as southern
Georgia and northwestern Florida®.

Conclusion

These findings have exciting implications for public health as it appears that prescribed fire, when performed on a
regular basis (regardless of burn regime), significantly reduces encounter rates with ticks infected with pathogenic
bacteria. Specifically, during the warm season when ticks are most active, the encounter rates with ticks infected
with pathogenic bacteria was 98% lower in burned versus UBUB sites. While these reduced encounter rates are
primarily due to overall reductions in tick abundance at sites subjected to long-term prescribed fire, regular pre-
scribed fire may also be capable of reducing the transmission of certain tick-borne bacteria. Further investigation
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into how long-term prescribed fire might affect pathogenic bacteria such as B. burgdorferi in the northeastern
U.S. is warranted.

Importantly, Gleim et al.® did not observe temporary reductions in tick populations after prescribed fire but
rather sustained reductions in tick abundance for the duration of the two-year study. Of note, small-scale, sin-
gular burns would not achieve these results and in fact could cause an increased number of ticks in an area due
to influx of hosts using the early successional habitat”*. Instead, Gleim et al.** found that the forest structure
achieved in this study (i.e. lack of mid-story and semi-open canopy) through regular, long-term prescribed fires
resulted in a drier microclimate at ground-level which was critical to achieving the sustained tick reductions
observed by Gleim et al.® and therefore lower encounter rates of infected ticks documented in our current study.
Because all of our burned sites had been burned on a regular basis for a minimum of ten years, further research
needs to occur to determine how long regular burns would have to occur in order to achieve the results observed
in this study. Additionally, the particular habitat and microclimatic conditions that are required for the results
observed in this study seem to imply that the ability of fire to reduce tick populations and disease risk may vary
depending on ecosystem-type and the management objectives of the prescribed fire (i.e. the extent at which forest
structure is altered). Thus, similar studies need to be conducted in different ecosystems and regions of the country
to determine whether long-term prescribed burning could have effects similar to those observed in the current
study on different pathogens and/or within different ecosystems.

Materials and Methods

Study area. Thessites for this study were located in southwestern Georgia and northwestern Florida which is
dominated by pine and mixed-pine forests, as well as agriculture. Prescribed burning is commonly used through-
out the region to maintain open pine forests including longleaf pine ecosystems. Twenty-one sites were selected
based on having had a long-term (ten or more years) presence or absence of prescribed fire. To account for pre-
scribed fire management both within the sites and immediately surrounding the sites, each site was further cate-
gorized as being (1) burned surrounded by burned areas (BB), (2) burned surrounded by unburned areas (BUB),
(3) unburned surrounded by burned areas (UBB) and (4) unburned surrounded by unburned areas (UBUB) (i.e.
a control). Importantly, “burned” or “unburned” in these site definitions means burned long-term or unburned
long-term, respectively. For burned sites, burning had historically occurred every 2 to 4 years during the dormant
season with all sites being burned during the study based on schedules determined by their respective land man-
agers. More details on collection sites are available in Gleim et al.5.

Tick collections, identification, and host monitoring. Tick collection, identification, and host mon-
itoring methods were previously described in Gleim et al.®. Briefly, ticks were collected via flagging each site
monthly for two years (January 2010 to December 2011). Wildlife host occurrence was monitored at each site
quarterly (with the exception of winter 2010) using passive, three day trail camera surveys (Cuddeback Capture,
Green Bay, WI). No permits or Institutional Animal Care and Use Committee approval are required for passive
trail camera surveys or collection of ticks. Permissions to work on public and private lands were given by the
Georgia Department of Natural Resources and land owners respectively.

Pathogen testing. DNA extractions of ticks were performed using a Qiagen DNeasy blood and tissue kit
(Germantown, MD) per the manufacturer’s instructions. All adult ticks were individually extracted and tested.
All DNA was stored at —20°C until PCR testing. Nymphs of the same species and from the same site and date
were extracted in pools of five. For larvae, a maximum of 100 larvae of the same species and from the same site
and date were extracted in pools of 20 with each pool being from a different clutch if possible. Because the same
sites were sampled in 2011, A. americanum nymphs collected in 2011 (in pools of 5 from the same site and date)
were randomly selected for testing from different sites and days. For instances in which pools were tested for
pathogens, the minimum infection prevalence was calculated in which each positive pool was counted as a single
positive tick. Thus, the minimum infection prevalence provides the most conservative estimate of actual pathogen
prevalence.

In 2010, all Amblyomma spp. and D. variabilis were screened for Rickettsia spp., E. chaffeensis and E. ewingii
using a multiplex quantitative polymerase chain reaction (QPCR) targeting the 17 kDa gene of Rickettsia spp. and
the 16S rRNA gene for both Ehrlichia species using primers Ech16S-17/Ech16S-99, and probe Ech16S-FAM,
Ech16S-17/Ech16S-99, and probe EEW16S HEX, and R17K135F/R17K249R, and probe R17KBC®. To identify
Rickettsia spp., all samples positive from the multiplex assay were analyzed using a restriction fragment-length
polymorphism (RFLP) assay targeting the rOmpA gene using primers RR190.70 and RR190.701R> followed by
the restriction enzymes Rsal and PstI*°.

In 2011, all tick species were tested for Rickettsia spp. utilizing a nested PCR targeting the 17 kDa gene using
17kD5/17kD3 primers for the primary reaction and 17kD1/17kD2 primers for the secondary reaction®.
Approximately half of the Rickettsia spp. positive samples (a total of 350 ticks/pools of ticks which in total
included 1,489 ticks) from 2011 were purified using a QIAquick gel extraction kit and sequenced at the Georgia
Genomics Facility (Athens, GA). All A. americanum from 2011 were tested for E. chaffeensis using nested PCR
targeting the 16S rRNA gene using primers ECC/ECB for the primary reaction and HE1/HE3 for the secondary
reaction®. Similarly, E. ewingii was tested for using a nested PCR targeting the 16S rRNA gene using primers
ECC/ECB for the primary reaction and HE3/EE72 for the secondary reaction®”*.

Finally, in 2010 only, Panola Mountain Ehrlichia (PME) was tested for using a nested PCR targeting the cit-
rate synthase (gltA) gene using primers CS-185F/CS-777R for the primary reaction and CS-214F/CS-619R for
the secondary reaction®. The results of A. maculatum PME testing were included in a larger statewide data set
published by Loftis et al.%. Because our data in Loftis et al.®* did not differentiate among other ticks tested from
various sources in Georgia, we have included the A. maculatum PME data here.

SCIENTIFIC REPORTS | (2019) 9:9974 | https://doi.org/10.1038/s41598-019-46377-4 7



https://doi.org/10.1038/s41598-019-46377-4



www.nature.com/scientificreports/

All A. americanum and Ixodes spp. were tested for Borrelia spp. using a nested PCR protocol targeting the flaB
gene using FLALL/FLARL primers for the primary reactions and FLALS/FLARS primers for the secondary reac-
tions®!. All Ixodes spp. were tested for Anaplasma spp. using a PCR assay targeting the msp2 gene using msp2-3f/
msp2-3r primers®2. All positive samples were identified by bi-directional sequencing at the Centers for Disease
Control and Prevention (Atlanta, GA).

All DNA extraction, primary, and secondary reactions were run in separate areas designated for that purpose.
A negative control (i.e., water) was included with each batch of extractions and PCR reactions. Appropriate pos-
itive controls were included in all batches of PCR.

Statistics. Generalized estimating equations (GEE) logistic regression models were used to examine whether
long-term prescribed fire impacted the prevalence of the following pathogens within their respective tick species:
Rickettsia spp. in A. americanum, Rickettsia spp. in A. maculatum, Rickettsia spp. in I. scapularis, B. lonestari in A.
americanum, and A. phagocytophilum in 1. scapularis. Ehrlichia spp. were not examined due to the fact that there
was only a single tick positive for Ehrlichia in burned sites. Positive pools of ticks were counted as 1 positive tick.

To further understand how host occurrence and long-term prescribed fire was impacting disease risk and
pathogen dynamics, GEE negative binomial regression models were used to examine (1) the encounter rates of
ticks positive for any type of pathogenic bacteria (e.g. E. chaffeensis, E. ewingii, Panola Mountain Ehrlichia, A.
phagocytophilum, and R. parkeri) and (2) the encounter rates of ticks positive for any type of bacteria. In both
models, a single pool of larvae or nymphs positive for a particular pathogen was counted as 1 positive tick. Each
model evaluated the impacts of burning, season, year, the number of times each wildlife species was captured on
the camera (wildlife species which were observed in at least 8 separate surveys over the course of the study were
considered in the model which included white-tailed deer, bobcats [Lynx rufus], coyotes [Canis latrans], raccoons
[Procyon lotor], Wild Turkeys [Meleagris gallopavo], nine-banded armadillos [Dasypus novemcinctus], and gray
foxes [Urocyon cinereoargenteus]), and the total number of animal captures on the camera on the respective
dependent variable (pathogenic vs any bacteria).

The GEE models were estimated using robust standard errors and an exchangeable working correlation struc-
ture. All models were adjusted for the clustering of observations by sampling site, and negative binomial models
included the time spent sampling for ticks as an exposure variable. Because wildlife host data was only collected
quarterly, all other data was examined on a quarterly basis, e.g. total number of ticks with pathogenic bacteria
was calculated for the entire quarter. Quarters were grouped into warm (spring and summer) and cool (fall and
winter) seasons due to the fact that trends were homogenous within those groupings as it related to the number
of ticks positive for pathogenic/any bacteria.

To create each multivariable model, each variable was examined individually and any variable with a p < 0.2
was included in an initial multivariable model. This initial multivariable model was run and variables with the
highest p-value were removed in a step-wise fashion until only variables with a p < 0.1 remained. All variables
excluded from this preliminary model were reintroduced one at a time to reassess their significance. After identi-
fying a preliminary main effects model, plausible two-way interactions were evaluated.

Data Availability

The data from this study are available from the corresponding author upon reasonable request.
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Wisconsin Precipitation
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e Qutbreak in many areas of
northeast US currently
* Many more nuisance calls in WI e
in 2021 but no large-scale
defoliation | :
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* |ntegrated Pest Management (IPM) Wisconsin Gé%iﬂtmﬂ,ﬁ;%ar;&ef Counties

Quarantine
 DATCP continues to monitor moths with traps to

inform slow the spread aerial spray program
* No DNR suppression program
. Blocontrol by fungl virus and wasps

Organizing an Aerial Spray for Forest Pests:
Recommendations and Regulations

Burnatt ‘Washburn

Wisconsin Department of Natural Resources, Division of Forestry,
Forest Health Program

June 2020

Buffalo

Tégmpealaau

Table of Contents Page
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Emerald Ash Borer

Confirmed in 61 of 72 counties

Although APHIS removed the federal
domestic Emerald Ash Borer (EAB)
quarantine regulations as of January 14,
2021, ash wood and firewood movement
within and outside Wisconsin may be
restricted by other tribal and state
regulations. Areas in yellow on the map
have never had an EAB detection,
making uncertified firewood movement
from infested areas discouraged. EAB
has been confirmed only within the
municipal boundaries colored in green
or on tribal lands colored in blue. By
avoiding moving uncertified firewood
long distances, we can continue to
reduce artificial spread of EAB. Please
visit www.emeraldashborer.wi.gov

for more information.

[ ] No EAB Detections

B EAB Found

B EAB Found on Tribal Land
Tribal Land

Map created June 15, 2021
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Integrated Pest Management 2 2021 Release Sites

EAB Biological Control
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 Management options

— Quarantine
 Federal ended Jan 2021
* Working on ending State

— Tree resistance programs

— Biocontrol

— Insecticides

— Forest management

o021

Bl clder release
municipal detection






Oak Wilt
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Oak Harvesting Guidelines to
Reduce the Risk of Introduction
and Spread of Oak Wilt

Wisconsin Council on Forestry
Wisconsin Department of Natural Resources

Legend

B Ok wilt established

[ ] oak wilt confirmed in 6 x & mile blocks






Oak Wilt Web Map
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Degree Day Tool UW EXTENSION AG WEATHER

Oak Wilt Vectors Emergence Thermal Model

e Use to predict beetle S e D
eme rge nce = Sta rt Of : . Choose the drop down Latitude and West longitude menu

values that are the closest to your location.

high-risk period S e (RS

Oak Wilt Vectors -
o Does not replace Emergence WESE Longitude
Thermal Model 931

Ca Ie n d a r d ates How to find coordinates from Google Maps

This oak wilt degree-day
model estimates cumulative Date of Interest
emergence of the two most
important insects that
transmit oak wilt (Colopterus
truncatus and Carpophilus
sayi) in the spring across
Wisconsin. The degree-day
model was constructed
based on recent vector
trapping data in Wisconsin
(Jagemann et al., 2018).
This model is a useful tool to

refine the beginning of the . .
periods when pruning, Oak Wilt General Information











Map of 25-mile buffers (light blue) based on the locations
of known stands of Heterobasidion root disease
(annosum root rot)

(As of June 2021)

Guidelines for

STUMP TREATMENT TO REDUCE THE
RISK OF INTRODUCTION AND SPREAD
OF HETEROBASIDION ROOT DISEASE
in Wisconsin

Wisconsin Department of Natural Resources

Legend

@  HRDstands_June2(21

|:| 25 mile bufier
|:| Grace peried until June 2022

I N lands





2en

HRD Web Map

g Marquette
+ : i'i::;&iﬁw .
© About This Map = X |k .. el M i P e,
;,‘mhenWashbdin éawer ~u Rﬁs,‘f'\gtﬂvwe
s 5 2 >y -
s This map displays confirmed o \
g : Polk ~ g Rusk Q
Heterobasidion Root Disease )" 77| Baron | x . Marinette
@ > g | . i Lincoln | %
(HRD) locations, and 25-mile and 4 J A, Tayjgr Langlade y
6-mile radius buffers around HRD Minneapolis gy o/ | Chippewa ® . = F
locations. The purpose of this i UNA. | craire e Roming +" Door
map is to help users determine Plerce | ig < [Eais Gl Clark | Shawdho
whether a stand is within 25 miles Pepin eh Bay
or 6 miles of a confirmed HRD Suftaic® Wood P&tage Outagamle‘ Rewauss 3
stand when the HRD stump = Jackson
treatment guidelines are used at ®©  Rochester ** o ® ° Q‘%g Calumﬂ /
the time of timber sale A Adaffs
establishment. You can turn map ot o Ygrqpette 4™
. ustin
layers on and off and zoom in and s J Sboygs
out to an area of interest. If your - - ' : @
e ) 63 ; - Sauk- Col@mbia
property falls within buffered 37 Richlant “yi @ Washington
areas, be sure to review the HRD Mason.City Prawicie G@e  Madison & Milwaukeo
stump treatment guidelines prior 18, oda Dane Jene,son,’ Milwalkee Grand Raplds
to conducting forest management Grant ® o 1Y
activities in your pine/spruce : LafayetteGreen  Rock i
Stand. Waterloo Dubuque Kenosha
g Waukegan
Rockford Kalamazoo
ol Cedar Rapids "
) Chicago
Aurora Q

-+ -81.540 45.989 Degrees |

Des Moines

(o) South Bend
Gary o}

"‘
Sault Ste k
Marie
Elliot Lake
e
Goderic
Midland
F’|fnt Sarnia
Largslng Waterford
: Chatham
Ann Arbor De(terIt
Toledo
















- - - Spotted Lanternfly Reported Distribution
SLF DIStrIbutIOn Updated July 1, 2021
=4

I M Int%mtcd Pest Mﬂnﬂunun

* Discovered in Pennsylvania
in 2014

Feed on 100+ species: tree-
of-heaven, fruit trees,
grapevines, hops,
hardwoods, and
ornamentals

Typical sucking insect
damage

Individual finds of Spotted Lanternfly.
No infestation present.

’ ‘ Spotted Lanternfly infestation present.

Produce large quantities of
honeydew

- |nternal state quarantine areas.





Asian Longhorne

A United States ASIAN LONGHORNED BEETLE ERADICATION PROGRAM

" sl 2020 National ALB Program Overview
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CoFWIPrescribedBurning7.21.21.pdf
Chegquamegon-Nicolet
National Forest RX Program

Why We Burn
Parts of a Prescribed Burn
Program Accomplishments

Michael Mattmiller
West Zone Fire Management Officer






Why do we burn?

Sharp Tailed Grouse Habitat
* Riley Lake Wildlife Management Area
* Moguah Barrens Wildlife Area

Turkey Habitat
e Buffalo Farm
* Medford Farm

Elk Forage openings
* Great Divide Ranger District

Reduce ladder fuels
e Washburn District

Reduce vegetation within areas of replanting
e Washburn District

Visual aesthetics
* Great Divide District Campgrounds






Before the match is
it

e Burn Plan — 21 Elements, Objectives,
Parameters

* Burn Preparation — Control lines,
Weather, Smoke, Contacts

* Fire Suppression Staffing Needs — Area
Partner activity level, Indices (Fire
Danger)

* Logistical items

* Agency Administrator discussion
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Morning of the
it Match

Weather forecasts

Smoke Modeling

Ensure contacts were made

Public in the area

Check staffing level requirements
 Weather forecasts
e Resource status check

* Briefing






Match is lit

Test Fire

Second GO/NO GO
Monitor fire effects
Monitor weather






lgnitions are complete

e Continue to check control lines

* Debrief resources — After Action Review
* Monitor the effects

* Routinely check the area






Accomplishments

 Chequamegon — Nicolet National Forest
* 4,014 acres
’ e Still Planned in 2021 — 1,391 acres

 East Zone
* 408 acres

* West Zone
* 3,606 acres











Wisconsin Department of Natural Resources
Prescribed Fire Program

Statewide stats: Who/Why/Where/What?
Trends in prescribed fire & forest management
Guiding principles for future growth

Michele Witecha
Prescribed Fire Specialist






Who We Are

Forestry is home for the fire management program

« Wildlife, natural heritage (endangered species) staff

“lighting the good, fighting the bad”

*{\‘\
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=
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DEPT. OF NATURAL RESOURCES





Why We Burn: “Restorative Disturbance”

- Forest game, non-game, and rare species all
require healthy functioning habitat to thrive.

e Sodowel!

* Climate change and the demand for healthy forests

 Restore/maintain our fire-dependent forested
ecosystems

+ Soils = Canopy cover

* Tree species density/diversity

« Remove/reduce invasives to decrease _
midstory & groundcover competition for native
plant & tree species

« Invigorate native plant/tree germination &
growth

« Oak/pine regeneration

«  Food source for wildlife s <" : R " Eg?g‘a

DEPT. OF NATURAL RESOURCES






Where We Burn: Statewide

Apostiellsi@nds
g atdhal

Lakeshore
4

Total DNR Prescribed Fire Acreage by Top Ten Primary Cover Types
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)
/ s ) - p Ottawa National, ; - Y
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Where We Burn: Forested Communities

Marquette
7 3 -
Bottomland H. g 08 v g
Oak Opening & Warm Season Planted Prairie (50/50 Mix) Chequamegon’
Oak &Sedguliﬁdo. (50/50 Mi National Forest b
sC " H
Oak/Pine Barrens & Shallow Lake/Deep Marsh (50/50 Mix) o National For
0Oak Opening & Remnant Dry/Mesic Prairie Mix) 3
Central Ha . ”1‘-"
{

&

Oak Opening






Where We Burn: State & County Forests

ApostlelsiEnd
: i‘i%ja‘il *

State Forest Rx burn(s) conducted in the last
3 years.

Flambeau River SF

Black River SF

Kettle Moraine SF (Southern & Lapham Peak)
Brule River SF

County forest (DNR-led) Rx burn(s) conducted
In the last 3 years:

Bayfield Jackson
Burnett Marinette
Clark Oneida
Douglas Sawyer

Eau Claire Vilas






What Guides Us

Fire Research

Fire history
Seasonality & timing of prescribed fire

Fire Effects
* Invasive/non-natives
 Timber production

* Regeneration






What Guides Us

State Forest Action Plan

GOAL 3: Fire-dependent forested landscapes
are efficiently and effectively managed with
prescribed fire.

GOAL 4: Wisconsin’s fire culture values the
use and benefits of prescribed fire, and
works to remove barriers to increase

prescribed burning among stakehold






What Guides Us

Forestry Strategic Direction

5-year plan provides a guide for focus,
metrics, accountability

First involvement of Rx fire program






Current & Future Trends

All signs point to increased.:

Interest in silvicultural burns

« Desire for increased regeneration

 Prep & cleanup

Support for more focus on forested fire-
dependent communities

* Climate change

« Active forest management











Honey, Let’s Burn the Woods!
Prescribed Fire on Private
Forested Lands in Wisconsin:

BRI
















We are one of the 20-30 qualified prescribed fire

contractors statewide

Our burn crew 1s NWCG trained and we carry liability
insurance that specifically covers prescribed burning
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“A valuable effect of fire management is to open up
the understory, so that seedlings like white, red,
black, and even some bur oaks stand a chance of
coming back. Native species of trees are what native
species of plants and animals need to survive. We‘ll
continue to use controlled burning to keep the duff
from building up excessively, which enables native
flora to return.

Finally, in these years of out-of-control fires, it’s
important to keep fuel from building up.”





“We are trying to

restore our woodland to"“ @
what it was many years

ago prior to it being

invaded by plants,

shrubs and trees not
native to our area. I
believe burnm:__ _7,;
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“We encourage WI DNR and any other state
stakeholders to increase communications and
education about the benefits of burns”

“I would hke to see more of 1t [Woodland
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“We encourage WI DNR and any other state
stakeholders to increase communications and
education about the benefits of burns”

“I would hke to see more of 1t [Woodland

- e e _".z- R T Q i
- = e (? e * ]
? ’j 4 h1 ] [ J I_I %‘ o) f

i
"u A‘r '\Jl

y ré "’ R'v. “".' & ! -&:J:_-'é






How Can You Help?

Public outreach and education

Training and standards







